Aiy Ay are the thermal conductivities;

A, B, 6, m,

B, t, 51, Sy are the dimensionless constants;

V, W are the boundary-layer functions;

Axs Ay are the effective thermal conductivities.
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IDENTIFICATION OF TIME-VARIABLE COEFFICIENTS
OF HEAT TRANSFER BY SOLVING A NONLINEAR
INVERSE PROBLEM OF HEAT CONDUCTION

Yu. M. Matsevityi, V. A. Malyarenko, UDC 536,532
and A, V. Multanovskii

The solution of the inverse nonstationary problem of nonlinear heat conduction by using the meth-
od of optimal dynamic filtering is considered.

The solution of the inverse heat-conduction problem has lately assumed especially great importance,
since one has to determine the boundary conditior.s of the heat fransfer from the limited information on the
temperature field of the body,

In [1, 2] the feasibility of electrical modelling of converse problems was considered; several approaches
have been suggested for solving such problems on various analog models. With this aim in mind, the applica-
tion of optimal dynamic filtering [3] is of some interest; it provides the possibility, as seen from previous
investigations [4, 5], of solving a wide class of inverse heat-conduction problems, including the reconstruc-
tion of the temperature field, the determination of the boundary conditions, the restoring of the initial distribu-
tions, etc.

In this article a technique that enables one to obtain in a special way a prediction of the estimate of the
state vector is proposed. The employed discrete-filtering algorithm of Kalman presupposes that an extended
state vector can be estimated due to the specific shape of the solution of the inverse problem, in which side
by side with the reconstruction of the temperature field, the identification of the boundary conditions is carried
out. In view of the latter, the components of the temperature field vector and the identifying vector of param-
eters @ are included in the state vector.

To construct a solution algorithm of the inverse problem a mathematical model was adopted by us in
which the finite-differences equation of heat conduction in its matrix form as well as the identifying parameter

« as a function of time are included:

Institute of Mechanical Engineering, Academy of Sciences of the Ukrainian SSR, Khar'kov. Translated
from Inzhenerno-Fizicheskii Zhurnal, Vol, 35, No. 3, pp. 505-509, September, 1978. Original article sub-
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A (T) Xep1 = C (T) Xy + D (T U, + Gegs Wepis @)
o =1 (1), 2

where the subscripts k refers to the k-th time instant; A[m X m], C{m X m], D[m X (r—1)], and G{m X p] are
nonstationary coefficient matrices; X[m x 1] is the extended state vector which includes the identification
parameter a [l x 1] (T, corresponding to this & is included in the coefficient matrix A); Ul(r—1) x 1] is the
control vector which does not include an expression with the identification parameter (¢Tgy) and W[p X 1] is
the vector of random perturbations of the system input whose statistical characteristics are described by the
Gaussian white noise.

Equation (1) can also the written as
Ay (Xp) Tt = Cy (X) Ty, + Dy (X,) Uk + Gyt Wi, (3)

in which, in contrast to Eq. (1) where X is the extended state vector, the estimated parameter « is not in-
cluded in the vector of the temperature field T[(m =) x 1], but is included in the nonstationary coefficient
matrices (A[m—1) x m—1], Ci[m—1], Cilm—? X (m—Y], Dy[(m—1) X r], and G{(m—I) X p]) and in the con-
trol vector (U'[r x 1]).

Equations (1)-(3) can be transformed to the form used in the optimal dynamic filtering of the original
mathematical models

Xet1 = Prg1.e Xp + Fep1,6 Uy + Gep1.0 W, 4)

where ®k+q k [m Xm], Fgiqk [m X (r—1]) and Gk+1,k [m x p] are transfer matrices of state, of control, and
of perturbations, respectively, obtained by means o_f the following straightforward transformations:

Op1,p = A7C; Fryre = A7D5 Grtre = A™G. (5)

1t should be noted that the matrix A is the finite~difference equations of heat conduction is not singular (det(A) =
0, since [ajjl =0, i=1, 2,...,m), and, consequently, it possesses an inverse matrix,

The recurrence algorithm for the discrete case of the Kalman filter is written as [6]
xk+1/k+l = X1k + Frpt Vi ~-Hk+1ik+l/k 1, (6)

where Xk+1/k+1 [m X 1] is the estimates of the extended state vector obtained from the measurement vector
Vk+1 [n X 1] and from the prediction of the estimate of the extended state vector from preceding step to the one
in question Xk+1/k [m x 1]; Hg 41 [n X m] is the measurement matrix which implements the link between the
measurements vector and the extended state vector,

The prediction of the extended state vector ikﬂ/k {'f'k+1/k§ &k+1/k} is found from the equations

Tecie = Dt Tise + Firr,6 Uk, (7)
arpipn = (), ®
while the weight matrix Kk +4 [m X n] is found from the equation
Kegr = Perys Hipr [Hep1Propye Hipr + Repi17 (9)
In the above one has
Py = Qeyr,r Prse Of 1,6+ Gerre Q.Ghy1.5 (10)
Py = Pojpoy — Ky H Prjp—13 1)

Pp 1 ks <1>kJr1 K’ Fk+1 K’ and Gk +1 k are transfer matrices; Py 41/, Pk/k» Qk, and Rk+1 are the matrices of
the prediction errors, estimation errors of the state vector, random perturbations at the system input, and
measurement errors, respectively.

The transfer matrices ®+,k and Gk +1,k can be found by using Eq. (1) and the matrices ¢i<+1,k and
Fi{ﬂ,k by using (3).

One of the most involved problems related to the use of the proposed filtering algorithm is the discrep-
ancy between the estimated and the true values, which results in the lowering of the correcting effect of the
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subsequent measurements. Since the actual form of Eq. (2) when identifying the heat-transfer coefficients
proves to be indeterminate, the determination of the predicted value of the vector a and of the corresponding
components of the matrix &4y k is also impossible.

If @ = const, then (2) can be replaced by the equation & = 0; consequently, expression (8) assumes the
form

&k—f-l/k = &k/k- (12)
In the case a = f(r) the following approach is proposed for obtaining an estimate prediction of the identi-
fication parameter a.

At the first time steps the predicted value of the state vector (within the estimated parameter o) is
evaluated by using the formula (12), and then, through the two new estimated values of this parameter — a
and &k+1/k+1 — a straightline isdrawn, which represents the geometrical locus of the points of the predictable
values of the vector for the next few steps or even until the procedure has ended, In the first alternative one
selects again in a few (usually five to six) steps two consecutive values of the predicted parameters and another
prediction straight line is drawn through them, etc.

One should select the value &k/k as the first prediction point; this corresponds to the lowest value of the
difference [|[Vkx— HgXk/kll. Then the second point through which the prediction line will be drawn is the value
o +1/k+1; Eq. (8) is now transformed into

&k-]-:-{—l/k—]-i =Mty +N, i=1,2,..., 5, (13)

where s is the number of time steps on which a given straight line is operational; M and N are coefficient
matrices dependent on @ +{/k+1, Qk/k, and the time step. The finite-difference approximation of Eq. (13) is
also taken into account when forming the transfer matrices.

A one-dimensional inverse problem of nonstationary heat conduction is considered as an example of
identifying time-varying coefficients of heat transfer; its solution enables one to carry out a simultaneous
reconstruction of the temperature field from limited data on the latter side by side with finding the relation
a = f(r) (for known Tgvy).

When solving the above, the results of solving a direct heat~conduction problem were used as standard
volume of the temperature for a flat wall made from a material with thermal characteristics dependent on time
(A = 50-0.03T (W/m-deg); @ =1.23:10"°—1,05°10"3 T (m%/sec)] and with the boundary conditions of the third
kind. Two different laws for changing o = f(7) were considered; the results of the inverse problem were even-
tually compared with the latter:

—_ .1075
I g 80—003Tp [ :(1.23—0.00105Tp) 107 "
L I
— 0.5 exp [—(1.23 —0,00105 Tp )-10757/L2),
— .10°8
L g 80=003T _ f —(1.23—0.001057,).10% ] 1)
L 10L?

Since the heating of a wall from the initial state assumed to be X;(0) = 0°C was carried out symmetri-
cally, the wall thickness equal to 0,08 m was broken in half, and the problem was now solved for a plate of
thickness L = 0,04 m under the above-described boundary conditions of the third kind, a[T —Tg4y] = ~AdT/dn on
one of the boundaries and on the vanishing boundary conditions of the second kind, and 8T/3n = 0 on the other
boundary. The temperature of the heating medium was adopted as 600°C. The thickness L was subdivided in-
to five portions (the space step h = 0.01 m inside the plate, while h = 0,005 m at the boundaries). The time
step was assumed to be AT = 30 min.

The temperature of the first point was adopted as the measured parameter, and the matrix Hi +, was
obtained in agreement with the latter.

The initial estimate of the state vector was adopted arbitrarily 5&% = [~50, —=50,.. ., —50, &/l, Gy,
was adopted equal to 200 or to 500, and the covariance matrix of errors in the initial estimates was assumed
to be equal to Py/p = cZE, where E is the identity matrix and c is a suitably high coefficient.
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Fig. 1. The convergence of the
estimates for identification
parameter a: 1) ay/) = 200 W/m? -
deg; 2) ay/p = 500 W/m?- deg; 3,
4) standard curves; 7) time, h.

The results of determining both relations o = f(r) are shown in Fig, 1 (curves 1 and 2) where for com-
parison the standard curves 3 and 4 are also shown; the latter correspond to the adopted relations o(t) and
o11(7) when solving the direct problem. The estimating curve 1 was obtained under the condition that the pre-
diction straight line was revalued after every five steps starting from the fifth one; the curve 2 was obtained
by again finding the prediction straight lines revalued after every five steps, but now, starting from the
seventh step. As far as the reconstruction of the temperature field is concerned, the difference between the
estimated temperature and the standard ones does not exceed 1-1,5% at the sixth-eighth step.

Thus, the obtained results enable one to conclude that the estimated values &k/k converge rapidly to the
standard ones with a sufficiently free choice of the initial values &y,

NOTATION

A,C,D, E, G, M, N
AT

A—l

X

T

a -

Xk +1/k+1r Tk+1/k+1,

R ‘and Oy ity

Xk +1/ks Tk+1/k, ¥%k+1/k
1k etk Flrt o

are the matrices;

is the transposed matrix;

is the inverse matrix;

is the extended state vector;

is the temperature field vector;

is the vector of unknown parameter;

are the estimates of state vector;
are the predictions of state vectors;

and Gpq k are the transition matrices;
Pk-}-i/k+1’ Pk+1/k’ ka
and R4y are the covariance matrices;
Ki +1 are the weight matrices;
Hg+1 is the measurement matrix;
A is the heat~conduction coefficient;
T is the time;
h is the grid step.
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PARAMETRIC METHOD OF SOLVING A NONLINEAR
HEAT-CONDUCTION PROBLEM FOR A
SEMIINFINITE BODY

V. A, Volkov and E. M. Smirnov UDC 536,21

A new method is proposed for solving heat-conduction problems with nonlinear boundary condi-
tions.

A very essential shortcoming of the well-known integral methods for solving nonlinear heat-conduction
problems [1] is the a priori choice of the family of temperature profiles or of heat-flux density. The degree
of approximation of the adopted distribution of the sought values to the true one and thus the error of the meth-
od depends one one's intuition; as a rule, they are only satisfactory in a finite range of the values of the param
eter,

Up to the mid-1960's a similar situation could be observed as regards the related problem of evaluating
the laminar boundary layer when the multiparameter method developed by Loitsyanskii [2] was published, show-
ing the way for obtaining the families of the velocity profiles in the boundary-layer section in a rational man-
ner. It was based on solving the boundary-layer differential equation in new dimensionless parameters (the
similarity parameters), thus ensuring good accuracy of the obtained results when analyzing specific problems.

In this article an attempt is made to generalize the concepts of the Loitsyanskii method to the nonlinear
problems of heat conduction.

We now consider a heat-conduction problem for a semiin finite body with constantthermal characteristics,
which can be formulated as follows:

oT (x, 1) _ a T (x, 7) @
ixd axr
aT
—A—— =Q (T T, ©) fa x=0,
ox Q( P N ; (2)
oT =0, T=T, a x— o0
dx
T = TO (x) for ©=0. 3)

In this form, the problem (1)-(3) is referred to according to the classification of [1] as a nonlinear prob-
lem of the second kind, where the nonlinearity appears only in the boundary conditions (2).

Instead of the variable T(x, T), the variable q(x, T) is introduced by means of the relation

aT (x, 1) “)

1) = —A
g (%, 7) FPE
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