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I D E N T I F I C A T I O N  O F  T I M E - V A R I A B L E  C O E F F I C I E N T S  

O F  H E A T  T R A N S F E R  BY S O L V I N G  A N O N L I N E A R  

I N V E R S E  P R O B L E M  O F  H E A T  C O N D U C T I O N  

Y u .  M. M a t s e v i t y i ,  Vo A .  M a l y a r e n k o ,  UDC 536.532 
a n d  A .  V.  M u l t a n o v s k i i  

The solution of the inverse  nonsta t ionary  p rob lem of nonl inear  heat  conduction by using the m e t h -  
od of opt imal  dynamic  f i l t e r ing  is considered.  

The solution of the inve r se  heat -conduct ion p rob l em has  la te ly  a s sumed  espec ia l ly  g rea t  impor t ance ,  
s ince one has to de te rmine  the boundary condition~ of the heat  t r a n s f e r  f r o m  the l imi ted  informat ion  on the 
t e m p e r a t u r e  field of the body. 

In [1, 2] the feas ib i l i ty  of e l ec t r i ca l  model l ing of converse  p r o b l e m s  was considered;  s eve ra l  approaches  
have been suggested for  solving such p rob l ems  on var ious  analog models .  With this a im in mind,  the app l ica -  
tion of opt imal  dynamic  f i l te r ing  [3] is of some in te res t ;  it p rovides  the poss ib i l i ty ,  as seen f r o m  previous  
invest igat ions [4, 5], of solving a wide c lass  of inverse  heat -conduct ion p r o b l e m s ,  including the r e c o n s t r u c -  
tion of the t e m p e r a t u r e  f ield,  the de te rmina t ion  of the boundary condit ions,  the r e s t o r i n g  of the initial d i s t r ibu-  
t ions,  etc.  

In this a r t i c l e  a technique that enables  one to obtain in a specia l  way a predic t ion of the e s t ima te  of the 
s tate  vec tor  is proposed.  The employed d i s c r e t e - f i l t e r i n g  a lgor i thm of Kalman p re supposes  that an extended 
s tate  vec to r  can be e s t ima ted  due to the speci f ic  shape of the solution of the inverse  p rob lem,  in which side 
by side with the recons t ruc t ion  of the t e m p e r a t u r e  field,  the identification of the boundary conditions is c a r r i ed  
out. In view of the l a t t e r ,  the components  of the t e m p e r a t u r e  field vec to r  and the identifying vec to r  of p a r a m -  
e t e r s  a a re  included in the s tate  vec tor .  

To cons t ruc t  a solution a lgor i thm of the inverse  p rob l em a ma themat i ca l  model  was adopted by us in 
which the f in i t e -d i f fe rences  equation of heat  conduction in its m a t r i x  fo rm as  well  as the identifying p a r a m e t e r  

as a function of t ime a re  included: 
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f r o m  Inzhene rno-F iz i chesk i i  Zhurnal ,  Vol. 35, No. 3, pp. 505-509, Sep tember ,  1978. Original  a r t i c le  sub-  
mit ted July 25, 1977. 
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A (T~) X~+~ = C (Th) X~ ~- D (T~) U~ ~- G~+~ W~+~; 

(z = f (% 

0) 

(2) 

where  the subsc r ip t s  k r e f e r s  to the k-th t ime instant;  Aim x m],  C[m x m] ,  Dim x ( r - l ) ] ,  and G[m x p] a re  
nonsta t ionary  coefficient  m a t r i c e s ;  X[m x 1] is the extended state vec to r  which includes the identification 
p a r a m e t e r  a [ l  x 1] (Tav cor responding  to this a is included in the coefficient  m a t r i x  A); U [ ( r - l )  x 1] is the 
control  vec to r  which does not include an expres s ion  with the identification p a r a m e t e r  (aTav) and W[p x 1] is 
the vec tor  of random per tu rba t ions  of the s y s t em input whose s ta t i s t ica l  cha r ac t e r i s t i c s  a re  descr ibed  by the 
Gaussian white noise.  

Equation (1) can also the wri t ten  as  

At (X0 Tk+l = Ci (X~)T~ ~- Di (X~)U~ -~ G~+lWk+l, (3) 

in which, in con t ras t  to Eq. (1) where  X k is the extended s ta te  vec to r ,  the e s t ima ted  p a r a m e t e r  ~ is not in-  
cluded in the vec to r  of the t e m p e r a t u r e  field T [ ( m - l )  x 1], but is included in the nonsta t ionary  coefficient  
m a t r i c e s  (Al[ (m-/ )  x ( m - l ) ] ,  C l [ ( m - / ) ] ,  C l [ ( m - / )  x ( m - l ) ] ,  D l [ ( m - / )  x r ] ,  and G[(m- / )  x p]) and in the con-  
t rol  vec to r  (Ul[r x 1]). 

Equations (1)-(3) can be t r a n s f o r m e d  to the f o r m  used in the opt imal  dynamic f i l te r ing  of the or iginal  
ma themat i ca l  models  

Xk+z = (I)k+l,k X~ + Fk+1,h Uh + G~+l,k Wk, (4) 

where  ~ k + t , k  [m x ml ,  F k + l , k  [m x ( r - l ) ]  and G k + t ,  k [m x p] a re  t r an s f e r  m a t r i c e s  of s ta te ,  of control ,  and 
of pe r tu rba t ions ,  r e spec t ive ly ,  obtained by means  of the foUowing s t r a igh t fo rward  t r ans fo rma t ions :  

qJk+l,k = A-~C; Fk+l,k = A-~D; 6k+~,k = A-i6 .  (5) 

I t  should be noted that the m a t r i x  A is the f in i te -d i f fe rence  equations of hea t  conduction is not s ingular  (det(A) 
0, s ince [aii] ~ 0, i = 1, 2 . . . .  , m) ,  and, consequently,  it p o s s e s s e s  an inverse  mat r ix .  

The r e c u r r e n c e  a lgor i thm for  the d i sc re t e  case  of the Kalman f i l t e r  is wr i t ten  as [6] 

XJc-l-1/k-[-I = Xk-[-l/lr -~- kk-[-I i r k - I - 1  --'Hk+lXk"t-l/It l, (6) 

where  X k + t / k + l  [m x 1] is the e s t ima te s  of the extended s tate  vec to r  obtained f r o m  the m e a s u r e m e n t  vec to r  
~rk+ ~ in x 1 ! and f r o m  the predic t ion  of the e s t ima te  of the extended s tate  vec tor  f r o m  preced ing  step to the one 
in question Xk+ I/k [m x 1]; Hk+ 1 in x m] is the m e a s u r e m e n t  m a t r i x  which implements  the link between the 
m e a s u r e m e n t s  vec to r  and the extended s ta te  vec to r .  

The predic t ion  of the extended s tate  vec tor  Xk+ ~/k {Tk+ i/k; ~k+ i/k} is found f rom the equations 

1 ~ Fk-}"l,kUk' Tk+l/k = (I)k§ l"k/k ~" L-1 ill 

hk+,:~ = f(~), 
while the weight m a t r i x  Kk+ l  [m • n] is found f r o m  the equation 

Kk+~ = Pk+~/k gr+~ [H~+~Pk+~/k H~+I + Rk+l l -~ 

In the above one has 

(7) 

(s) 

(9) 

T . 
Pk+I/k = q)k+i,k Pk/k (1)T@l,k + 6k-~l/k Qb.6k-l-l.k, ( lO) 

Pk/h = Ph/h--1 --- KhH~Ph/k - 1 ; (11) 

~ k + i , k ,  ~ + 1  k '  F k + l  k '  and G k + l ,  k a re  t r an s f e r  m a t r i c e s ;  P k + l / k ,  Pk/k,  Qk, a n d R k + l  a re  the m a t r i c e s  of 
the p red te tmn  e r r o r s ,  e s t imat ion  e r r o r s  of the s tate  vec to r ,  r andom per turba t ions  at the s y s t e m  input, and 
m e a s u r e m e n t  e r r o r s ,  re  spect ively.  

The t r a n s f e r  m a t r i c e s  ~ k + l , k  and G k + / , k  can be found by using Eq. (1) and the m a t r i c e s  ~ k + l , k  and 
F ~ + I ,  k by using (3). 

One of the mos t  involved p rob l em s  re la ted  to the use of the proposed  f i l ter ing a lgor i thm is the d i s e r e p -  
ancy between the e s t ima ted  and the t rue va lues ,  which r e su l t s  in the lower ing of the co r rec t ing  ef fec t  of the 

1095 



subsequent measurements .  Since the actual fo rm of Eq. (2) when identifying the hea t - t r ans fe r  coefficients 
proves  to be indeterminate ,  the determinat ion of the predicted value of the vector  a and of the corresponding 
components of the matr ix  ~k+t,k is also impossible.  

If  a = const,  then (2) can be replaced by the equation a = 0; consequently, express ion (8) assumes  the 
fo rm 

Cth+~/h = ~tk/k. (12) 

In the case a = f(r) the following approach is proposed for  obtaining an est imate  predict ion of the identi-  
fication pa rame te r  a. 

At the f i r s t  t ime steps the predicted value of the state vec tor  (within the es t imated pa rame te r  a) is 
evaluated by using the formula (12), and then, through the two new est imated values of this pa r ame te r  - ~ k  
and ~r k + 1/k + i - a s t ra ight  line is drawn, which represen t s  the geometr ica l  locus of the points of the predictable 
values of the vec tor  for  the next few steps or even until the procedure  has ended. In the f i r s t  al ternative one 
selects  again in a few (usually five to six) steps two consecutive values of the predicted pa rame te r s  and another 
predict ion s t ra ight  line is drawn through them, etc. 

One should select  the value ~ / k  as the f i r s t  predict ion point; this corresponds to the lowest  value of the 
difference [[Vk- HkXk/kll. Then the second point through which the predict ion line will be drawn is the value 
~tk+l/k+l;  Eq. (8) is now t ransformed into 

~h+,+l/h+~ = M~h+~+l + N, i ---- 1, 2 . . . . .  s, (13) 

where s is the number  of time steps on which a given s t ra ight  line is operational;  M and N are  coefficient 
ma t r i ces  dependent on ak+ ffk+ t, aTjk, and the t ime step. The f ini te-difference approximation of Eq. (13) is 
also taken into account when forming the t r ans fe r  mat r ices .  

A one-dimensional  inverse problem of nonstat ionary heat conduction is considered as an example of 
identifying t ime-vary ing  coefficients of heat t rans fe r ;  its solution enables one to ca r ry  out a simultaneous 
recons t ruc t ion  of the tempera ture  field f rom limited data on the lat ter  side by side with finding the relation 
a = f(T) (for known Tav). 

When solving the above, the resul ts  of solving a d i rec t  heat-conduction problem were  used as standard 
volume of the tempera ture  for a flat wall made f rom a mater ia l  with thermal  charac te r i s t i c s  dependent on time 
(2~ = 50-0.03T (W/m.deg);  a = 1 .23 .10 -5 -1 ,05  �9 10 -3 T (m2/sec)] and with the boundary conditions of the third 
kind. Two different  laws for changing a = f0") were considered;  the resul ts  of the inverse problem were  even-  
tually compared with the la t ter :  

5 0 - - 0 . 0 3 T  b [1 +0 .5  ( l '23-0"00105Tb) '10-Sz  (14) 
I. a =  L L 2 - -  

- -  0.5 exp [-- (1.23 - -  0,00105 Tb ). 10-~/L2], 

50--0"03Tb exp [- --(1.23--0.00105 T b ).]O-5"r I (15) 
II. a L k 10L z J" 

Since the heating of a wall f rom the initial state assumed to be Xi(0 ) = 0~ was ca r r i ed  out s y m m e t r i -  
cally,  the wall thickness equal to 0.08 m was broken in half, and the problem was now solved for a plate of 
thickness L = 0.04 m under the above-descr ibed  boundary conditions of the third kind, a [ T - T a v  ] = -XdT/dn on 
one of the boundaries and on the vanishing boundary conditions of the second kind, and aT/an = 0 on the other 
boundary. The tempera ture  of the heating medium was adopted as 600~ The thickness L was subdivided in- 
to five portions (the space step h = 0.01 m inside the plate,  while h = 0.005 m at the boundaries). The time 
step was assumed to be A7 = 30 min. 

The tempera ture  of the f i r s t  point was adopted as the measured  pa rame te r ,  and the mat r ix  Hk+ t was 
obtained in agreement  with the lat ter .  

The initial es t imate  of the state vec tor  was adopted a rb i t r a r i ly  ~ o  = [ - 5 0 ,  - 5 0  . . . . .  - 5 0 ,  $'0/0], ~a/0 
was adopted equal to 200 or  to 500, and the covariance mat r ix  of e r r o r s  in the initial es t imates  was assumed 
to be equal to P0/0 = c2E, where E is the identity mat r ix  and c is a suitably high coefficient. 
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Fig. 1. The convergence of the 
e s t i m a t e s  for  identification 
p a r a m e t e r  a: 1) aQ/0 = 200 W/m 2. 
deg; 2) aa/0 = 500 W/m2. deg;3 ,  
4) s tandard  curves ;  r) t ime ,  h. 

/ 

The r e su l t s  of de te rmin ing  both re la t ions  a = f(r) a re  shown in Fig. 1 (curves 1 and 2) where  for  c o m -  
pa r i son  the s tandard  curves  3 and 4 a re  a lso  shown; the l a t t e r  cor respond  to the adopted re la t ions  aI0- ) and 
affi(r ) when solving the d i r ec t  p rob lem.  The e s t ima t ing  curve 1 was obtained under  the condition that the p r e -  
diction s t ra igh t  line was revalued  af ter  eve ry  five s teps  s ta r t ing  f rom the fifth one; the curve 2 was obtained 
by again finding the predic t ion  s t ra igh t  l ines revalued  a f te r  every  five s t eps ,  but now, s ta r t ing  f r o m  the 
seventh step.  As fa r  as the recons t ruc t ion  of the t e m p e r a t u r e  field is concerned,  the d i f ference  between the 
e s t ima ted  t e m p e r a t u r e  and the s tandard ones does not exceed 1-1.5% at  the s ix th-e ighth  step.  

Thus ,  the obtained r e su l t s  enable one to conclude that the e s t ima ted  values  ~ converge rapidly to the 
s tandard  ones with a sufficiently f ree  choice of the initial  values  &0/0. 

A, C, D, E,  G, M, N 
A T 
A-1 

X 
T 
0t 

Xk+ l / k + l ,  "rk+ 1/k+l, 
and  k+l/k+ ! 

X k + l / k ,  T k + l / k ,  ~ k + l / k  
~k+l ,k ,  e/~k+l,k, F ~ + l , k ,  

and Gk+l. k 
P k + l / k + l ,  P k + I / k ,  Qk, 

and Rk+ 1 
Kk+l  
Hk+ l  

T 

h 

N O T A T I O N  

are  the m a t r i c e s ;  
is the t r ansposed  ma t r ix ;  
is the inverse  ma t r ix ;  
is the extended s tate  vec to r ;  
is the t e m p e r a t u r e  field vec to r ;  
is the vec tor  of unknown p a r a m e t e r ;  

a r e  the e s t i m a t e s  of s tate  vec to r ;  
a re  the predic t ions  of s ta te  vec to r s ;  

a re  the t rans i t ion  m a t r i c e s ;  

a re  the covar iance  m a t r i c e s ;  
a r e  the weight m a t r i c e s ;  
is  the m e a s u r e m e n t  ma t r i x ;  
is the heat-conduct ion coefficient;  
is the t ime;  
is the grid step.  
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2. 
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PARAMETRIC METHOD OF SOLVING A 

HEAT-CONDUCTION PROBLEM FOR A 

SEMIINFINITE BODY 

V. A. Volkov and E. M. Smirnov 

N O N L I N E A R  

UDC 536.21 

A new method is p roposed  for  solving heat -conduct ion p rob l ems  with nonl inear  boundary condi-  
tions. 

A ve ry  es sen t i a l  shor tcoming  of the wel l -known in tegra l  methods for  solving nonl inear  heat -conduct ion 
p r o b l e m s  [1] is the a p r i o r i  choice of the fami ly  of t e m p e r a t u r e  prof i les  or  of hea t - f lux  density.  The degree  
of approximat ion  of the adopted dis t r ibut ion of the sought va lues  to the t rue one and thus the e r r o r  of the m e t h -  
od depends one one ' s  intuition; as a ru le ,  they a r e  only sa t i s f ac to ry  in a finite range of the values  of the p a r a m -  
e t e r .  

Up to the mid-1960 ' s  a s i m i l a r  s i tuat ion could be obse rved  as r ega rd s  the re la ted  p rob l em of evaluat ing 
the l amina r  boundary l aye r  when the m u l t i p a r a m e t e r  method developed by Loi t syanski i  [2] was published, show- 
ing the way for  obtaining the fami l i e s  of the veloci ty  p rof i l es  in the bounda ry - l aye r  sect ion in a ra t ional  m a n -  
ner .  I t  was  based on solving the bounda ry - l aye r  di f ferent ia l  equation in new d imens ion less  p a r a m e t e r s  (the 
s imi l a r i t y  p a r a m e t e r s ) ,  thus ensur ing  good accuracy  of the obtained r e su l t s  when analyzing specif ic  p rob l ems .  

In this a r t i c l e  an a t tempt  is made to genera l ize  the concepts  of the Loi t syanski i  method to the nonl inear  
p rob l ems  of heat  conduction. 

We now cons ider  a heat -conduct ion p rob lem for  a semi in f in i t e  body with constant  t he rma l  c h a r a c t e r i s t i c s ,  
which can be fo rmula ted  as follows: 

c)T (x, .c) O~T (x, "0 = G  
OT Ox 2 

OT 

OT 
Ox = O, T =  T| as x - - + o o ;  

for x = O ,  

T = T  o(x) for ~=-0. 

(1) 

(2) 

(3) 

In this f o r m ,  the p rob l em  (1)-(3) is r e f e r r e d  to accord ing  to the c lass i f ica t ion  of [1] as a nonlinear  p r o b -  
l em of the second kind, where  the nonl inear i ty  appea r s  only in the boundary conditions (2). 

Ins tead of the va r i ab le  T(x, T), the va r i ab le  q(x, T) is introduced by means  of the re la t ion 

q (x, ~) = - - ~  
OT(x, T) (4) 

OX 
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